The Sociology of Expectations in Science and Technology | Borup, Brown, Konrad, van Lente

Mads Borup, Nik Brown, Kornelia Konrad, Harro Van Lente; The Sociology of Expectations in Science and Technology; an Editorial; In Technology Analysis & Strategic Management, Volume 18, Numbers 3/4, 285 –298, July – September, 2006-07; 14 pages; DOI:10.1080/09537320600777002; paywall; copy


Claim: Moore’s law is a self-fulfilling prophecy; by stating the law and the “tick tock” roadmap, the vision is driven to successful eventuality.


  • “The Hype Cycle,” The Gartner Group
    The metaphoric device of an underdamped oscillator applied to social processes.
    Hype Cycle, In Jimi Wales’ Wiki.


<quote>By definition, innovation in contemporary science and technology is an intensely future-oriented business with an emphasis on the creation of new opportunities and capabilities. Novel technologies and fundamental changes in scientific principle do not substantively pre-exist themselves, except and only in terms of the imaginings, expectations and visions that have shaped their potential. As such, future-oriented abstractions are among the most important objects of enquiry for scholars and analysts of innovation. Such expectations can be seen to be fundamentally ‘generative’, they guide activities, provide structure and legitimation, attract interest and foster investment. They give definition to roles, clarify duties, offer some shared shape of what to expect and how to prepare for opportunities and risks. Visions drive technical and scientific activity, warranting the production of measurements, calculations, material tests, pilot projects and models. As such, very little in innovation can work in isolation from a highly dynamic and variegated body of future-oriented understandings about the future.</quote>

<ahem>future-oriented understandings about the future.</ahem>


There are 49 bibliographic references.

  1. H. van Lente, Promising technology. The dynamics of expectations in technological developments, PhD Thesis, University of Twente, Enschede, 1993.
  2. M. Michael, Futures of the present: from performativity to prehension, in: N. Brown, B. Rappert & A. Webster (Eds) Contested Futures: A Sociology of Prospective Techno-Science (Aldershot, UK, Ashgate, 2000).
  3. M. Sturken, D. Thomas & S. J. Ball-Rokeach (Eds), Technological Visions. The Hopes and Fears that Shape New Technologies (Philadelphia, PA, Temple University Press, 2004).
  4. N. Brown, B. Rappert & A. Webster (Eds), Contested Futures: A Sociology of Prospective Techno-Science (Aldershot, UK, Ashgate, 2000).
  5. W. Bijker & J. Law (Eds), Shaping Technology/Building Society (Cambridge, MA, MIT Press, 1992); A. Pickering (Ed.), Science as Practice and Culture (Chicago, IL, University of Chicago Press, 1992); B. Latour, Science in Action: How to Follow Scientists and Engineers through Society (Milton Keynes, UK, Open University Press, 1987); J. Law (Ed.), A Sociology of Monsters—Essays on Power, Techno- logy and Domination (London, Routledge, 1991).
  6. H. van Lente & A. Rip, Expectations in technological developments: an example of prospective structures to be filled by agency, in: C. Disco & B. van der Meulen (Eds), Getting New Technologies Together. Studies in Making Sociotechnical Order (Berlin, De Gruyter, 1998).
  7. J. Guice, Designing the future: the culture of new trends in science and technology, Research Policy, 28, 1999, pp. 81– 98.
  8. P. Martin, Great expectations: the construction of markets, products and user needs during the early development of gene therapy in the USA, in: R. Coombs, K. Green, A. Richards & V. Walsh (Eds), Technology and the Market: Demand, Users and Innovation (Cheltenham, UK, Edward Elgar, 2001); A. Hedgecoe & P. Martin, The drugs don’t work: expectations and the shaping of pharmacogenetics, Social Studies of Science, 33, 2003, pp. 327 –364.
  9. C. Selin, Time matters: temporal harmony and dissonance in nanotechnology networks, Time & Society, 15, 2006, pp. 121–139.
  10. H. Nowotny & U. Felt, After the Breakthrough—the Emergence of High-Temperature Superconductivity as a Research Field (Cambridge, UK, Cambridge University Press, 1997); M. Callon, Variety and irre- versibility in networks of technique conception and adoption, in: D. Foray & C. Freeman (Eds), Tech- nology and the Wealth of Nations—The Dynamics of Constructed Advantage (London, Pinter, 1993).
  11. Van Lente, op. cit., Ref. 1; Van Lente & Rip, op. cit., Ref. 6; J. Deuten & A. Rip, Narrative infrastructure in product creation processes, Organization, 7, 2000, pp. 69– 63; K. Konrad, Pra ̈gende Erwartungen— Szenarien als Schrittmacher der Technikentwicklung (Berlin, Edition Sigma, 2004).Editorial 297
  12. N. Brown & M. Michael, A sociology of expectations: retrospecting prospects and prospecting retro- spects, Technology Analysis and Strategic Management, 15, 2003, pp. 3–18.
  13. M. Dierkes, U. Hoffman & L. Maez, Leitbild und Technik: Zur Entstehung und Steuerung technischer Innovationen (Berlin, Edition Sigma, 1992); W. Rammert, Die kulturelle Orientierung der technischen Entwicklung. Eine technikgenetische Perspektive, in: D. Siefkes, P. Eulenho ̈fer, H. Stach & K. Sta ̈dtler, (Eds), Sozialgeschichte der Informatik. Soziale Praktiken und Orientierungen (Wiesbaden, Deutscher Universita ̈ts Verlag, 1998); H. D. Hellige, Technikleitbilder auf dem Pru ̈fstand: Leitbild-Assessment aus Sicht der Informatik- und Computergeschichte (Berlin, Edition Sigma, 1996).
  14. For example, M. Akrich, The de-scription of technical objects, in: Bijker & Law, op. cit., Ref 5, pp. 205– 224; W. B. Carlson, Artifacts and frames of meaning: Thomas A. Edison, his managers, and the cultural construction of motion pictures, in shaping technology/building society, in: Bijker & Law, op. cit., Ref 5; J. Jelsma, Innovating for sustainability: involving users, politics and technology, Innovation, 16, 2003, pp. 103–116; N. Oudshoorn & T. Pinch, How Users Matter: The Co-construction of Users and Technol- ogy (Cambridge, MA, MIT Press, 2003).
  15. B. De Laat, Scripts for the future: using innovation studies to design foresight tools, in: Brown et al., op. cit., Ref. 4; FORMAKIN, Final Report of the Formakin Project (Foresight as a Tool for the Management of Knowledge Flows and Innovation), York etc.: Science and Technology Studies Unit, University of York, 2001. An EU-TSERP project led by A.Webster, L. Sanz-Mene ́ndez and B. van der Meulen.
  16. C. Marvin, When Old Technologies were New (Oxford, Oxford University Press, 1990); M. Levin, When the Eiffel Tower was New: French Visions of Progress at the Centennial of the Revolution (Cambridge, MA, University of Massachusetts Press, 1989).
  17. Ibid.
  18. R. Kosellek, Futures Past—On the Semantics of Historical Time (Columbia, NY, Columbia University Press, 2004).
  19. M. Weber, Politics as a vocation, in: H. Gerth & C. W. Mills (Eds), From Max Weber: Essays in Sociology (London, Routledge and Kegan Paul, 1958), pp. 77– 128; G. H. Mead, The Philosophy of the Present (Chicago, IL, Chicago University Press, 1932); A. Schutz, On multiple realities, in: Collected Papers I, The Problem of Social Reality (The Hague, Alfred Schutz, 1962); A. Schutz, Tiresias, or our knowledge of future events, in: Collected Papers II, Studies in Social Theory (The Hague, Alfred Schutz, 1964); M. Emirbayer & A. Mische, What is agency?, American Journal of Sociology, 103(4), 1998, pp. 962 –1023.
  20. R. K. Merton, Socially expected durations: a case study of concept formation in sociology, in: W. Powell & R. Robbins (Eds), Conflict and Consensus: A Festschrift for L. Coser (New York, Free Press, 1984); B. Adam, Timescapes of Modernity: The Environment and Invisible Hazards (London, Routledge, 1998); B. Adam, Time and Social Theory (Cambridge, Polity, 1990); P. Virilio, The Information Bomb (London, Verso, 2000); P. Virilio, Speed and Politics (Columbia, NY, Columbia University Press, 1986).
  21. F. Bartlett, Remembering. A study in Experiential and Social Psychology (Cambridge, UK, Cambridge University Press, 1995); P. Jedlowski, Memory and sociology: themes and issues, Time and Society, 10, 2001, pp. 29– 44; M. Halbwacks, La Memoire Collective (Paris, Albin Michel, 1997).
  22. J. M. Barbalet, Social emotions: confidence, trust and loyalty, International Journal of Sociology and Social Policy, 16(9/10), 1996, pp. 75 –96.
  23. R. K. Merton, The self-fulfilling prophecy, The Antioch Review, 8, 1948, pp. 193– 210.
  24. N. Rosenberg, On technological expectations, The Economic Journal, 86, 1976, pp. 523–535; N. Rosenberg, On technological expectations, in: N. Rosenberg (Ed.), Inside the Black Box: Technology and Economics (Cambridge, UK, Cambridge University Press, 1982), pp. 104–119; C. Antonelli, The role of technological expectations in a mixed model of international diffusion of process innovations: the case of open-end spinning rotors, Research Policy, 18, 1989, pp. 273–288; F. Lissoni, Technological expectations and the diffusion of ‘intermediate’ technologies, CRIC (Manchester), Working Paper No. 8, August 1999; D. S. Boone, K. N. Lemon & R. Staelin, The impact of firm introductory strategies on con- sumers’ perceptions of future product introductions and purchase decisions, Journal of Product Inno- vation Management, 18(2), 2001, pp. 96 –109.
  25. K. Froot, D. Scharfstein & J. Stein, Herd on the street: informational efficiencies in a market with short- term speculation, Journal of Finance, 47, 1992, pp. 1461– 1484; S. Bikhchandani & S. Sharma, Herd behavior in financial markets, IMF Staff Papers, 47(3), 2001.
  26. R. M. Grant, Contemporary Strategy Analysis, 2nd edn (Oxford, Blackwell, 1995).298 M. Borup et al.
  27. G. Reger, Technology foresight in companies: from an indicator to a network and process perspective, Technology Analysis & Strategic Management, 13(4), 2001, pp. 533 –553.
  28. R. Koppl, Big Players and the Economic Theory of Expectations (London, Palgrave, 2002); J. Pixley, Finance organisations, decisions and emotions, British Journal of Sociology, 53(1), 2002, pp. 41–65.
  29. De Laat, op. cit., Ref. 15; H.van Lente, From promises to requirement, in: Brown et al., op. cit., Ref. 4.
  30. Konrad, op. cit., Ref. 11; Van Lente, op. cit., Ref. 29.
  31. F. Geels & W. Smit, Lessons form failed technology futures: potholes in the road to the future’, in Ref 4, pp. 881–882.
  32. Ibid.
  33. N. Luhmann, The modernity of science, New German Critique, 61, Winter 1994, pp. 9–16.
  34. Kosellek, op. cit., Ref. 18.
  35. J. Mokyr, Evolutionary biology, technological change and economic history, Bulletin of Economic Research, 43(2), 1991, pp. 127– 149.
  36. N. Brown, Hope against hype: accountability in biopasts, presents and futures, Science Studies, 16(2), 2003, pp. 3–21.
  37. Deuten & Rip, op. cit., Ref. 11.
  38. Konrad, op. cit., Ref. 11; Brown & Michael, op. cit., Ref. 12.
  39. Van Lente, op. cit., Ref. 29.
  40. W. Bijker, Of Bicycles, Bakelites, and Bulps—Toward a Theory of Sociotechnical Change (Cambridge, MA, MIT Press, 1995), ch. 5.
  41. Brown & Michael, op. cit., Ref. 12.
  42. D. MacKenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance (Cambridge, MA, MIT Press, 1990).
  43. J. Ravetz, What is post-normal science?, Futures, 31, 1999, pp. 647– 653.
  44. Van Lente, op. cit., Ref. 1; Konrad, this issue.
  45. Michael, op. cit., Ref. 2.
  46. C. Thompson, The biotech mode of reproduction, Paper prepared for the School of American Research Advanced Seminar ‘Animation and Cessation: Anthropological Perspectives on Changing Definitions of Life and Death in the Context of Biomedicine’, Santa Fe, New Mexico, 2000.
  47. P. Weingart, A. Engels & P. Pansegrau, Risks of communication: discourses on climate change in science, politics, and mass medi, Public Understanding of Science, 9(3), 2000, pp. 261–283.
  48. H. Nowotny, P. Scott & M. Gibbons, Re-thinking Science—Knowledge and the Public in an Age of Uncertainty (Cambridge, UK, Polity Press, 2001), p. 232.
  49. Brown et al., op. cit., Ref. 4.

Comments are closed.