Algorithmic Accountability: The Big Problems | SAP

Tom Slee (SAP); Algorithmic Accountability: The Big Problems; Their Blog; 2017-10.

tl;dr → You have problems, SAP has expertise in this practice area. Call now.

Original Sources

Yvonne Baur, Brenda Reid, Steve Hunt, Fawn Fitter (SAP); How AI Can End Bias; In Their Other Blog, entitled The D!gitalist; 2017-01-16.
Teaser: Harmful human bias—both intentional and unconscious—can be avoided with the help of artificial intelligence, but only if we teach it to play fair and constantly question the results.


  • The Canon is rehearsed.
  • General Data Protection Regulation (GDPR)
    • European
    • “in effect in” 2018 (2018-05-28).

Anti-patterns, Negative (Worst) Practices

  • Bad statistics
  • Ill-defined scales
  • Bad Incentives
  • Lack of transparency

Five Axes of Unfairness
Unfairness ↔ Disparate Impact

  1. Target variables
  2. Training data
  3. Feature selection
  4. Proxies
  5. Masking


  • Explanation
  • Transparency
  • Audits
  • Fairness


  • Solon Barocas, self [Princeton]
    Trade: theorist.
  • Cynthia Dwork, self [Microsoft]
    Trade: pioneer [theorist]..
  • Seth Flaxman, staff, Oxford University.
    Trade: expert.
  • Bryce Goodman, staff, Oxford University.
    Trade: expert.
  • Cathy O’Neil, self.
    Trade: data scientist statistician who works on a Macintosh Computer and lives in San Francisco.
  • Frank Pasquale, professor, law [Maryland]
    Ttrade: educator.
  • Andrew Selbst, self [U.S. .Court of Appeals]
    Trade: theorist


Comments are closed.